(6x^2-4x+1)-(2x^2+6x-1)=1

Simple and best practice solution for (6x^2-4x+1)-(2x^2+6x-1)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6x^2-4x+1)-(2x^2+6x-1)=1 equation:



(6x^2-4x+1)-(2x^2+6x-1)=1
We move all terms to the left:
(6x^2-4x+1)-(2x^2+6x-1)-(1)=0
We get rid of parentheses
6x^2-2x^2-4x-6x+1+1-1=0
We add all the numbers together, and all the variables
4x^2-10x+1=0
a = 4; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·4·1
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{21}}{2*4}=\frac{10-2\sqrt{21}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{21}}{2*4}=\frac{10+2\sqrt{21}}{8} $

See similar equations:

| –8f=–3−9f | | 3(x+28)+4(x+35)=14 | | 8=3f+5 | | 120+5x=60-5x | | 2(3x+4)=10x-2 | | 3(x+28)+4(x+34)=14 | | (2x^2-2x+3)-(x^2+5x-5)=1 | | 50-5y=1y-4 | | 0.2x2−5=0 | | 6=2w−2 | | 18+15y=-90 | | 2-2w=6 | | 2x2+0x−18=0 | | x12–5=–4 | | 6x+5=47*3+5x=3*6x+9=75*7x+5=54*7+2x=23 | | (5x^2-x+5)+(x^2+x-5)=1 | | x42=6 | | -2x-6=−,3x-21 | | t+1516=3 | | 26=2+2x | | 8x2+32x=0 | | 6f=1/2 | | 2s-14=30s | | 3x+5=×+25 | | -2-2x=-5-x | | 15w+19=19 | | 40-5x=1x-2 | | d/4+19=15 | | 5(2x+8)=2(x+16) | | 10x-54=x-36 | | 2t=9t | | 56=7(b−81) |

Equations solver categories